Total Internal Reflection

Objectives

- Measure indices of refraction for different media
- Describe the conditions under which total internal reflection occurs and determine the critical angle
- Explain and solve problems involving total internal reflection and critical angle
- Explain, using a diagram, total internal reflection in an optical device
- Analyze situations involving total internal reflections

Review of Snell's Law

Snell's Law Works in the Other Direction

What if $\theta_i = 0^\circ$?

And if it increases?

Poor fish can only see a little circle!

•The fish can only see a circle of sky! •The circle is determined based on the θ_{CRIT} of water (49°) •Beyond 49° fishy only sees the reflection of surroundings

Can we use this effect?

Yes! It is the basis of fibre optics.

Fibre Optics

Summary

- $\sin\theta_1/\sin\theta_2$ is constant in a given medium
- Incident & Refracted rays are on opposite sides of the normal
- When light goes into a denser medium it bends towards the normal
- When light goes into a less dense medium it bends away from the normal
- Light doesn't refract when it enters at 90°
- $\theta_{CRIT} = \arcsin(n_2/n_1) = \sin^{-1}(n_2/n_1)$
- Total internal reflection occurs if: $n_1 \! > \! n_2$ and if $\theta_1 \! > \! \theta_{\text{CRIT}}$
- When $\theta_1 = \theta_{CRIT}$ then $\theta_2 = 90^{\circ}$

Homework

Heath: p.482 #9, 13, 30, 32, 34, 36

